A= (a, b, c) and B =(x,y,z), then the function f(a) = y, f(c)=x defines a:
A. One-to-one function
B. Onto function
C. One-one and onto function
D. Not a function
A. One-to-one function
B. Onto function
C. One-one and onto function
D. Not a function
A. p(x) = (x-r)q(x)+k
B. p(x)=(x-r)q(x)-k
C. p(x) = (x-r)q(x)k
D. p(x) = (x+r)q(x) + k
A. Commutative group
B. Monoid
C. Semi group
D. None of these
A. R is a commutative ring
B. R has no zero-divisor
C. If R is finite, then it is a field
D. R is division ring
A. Simple Curve
B. Smooth Curve
C. Closed Curve
D. Analytic Curve
A. Perpendicular
B. Parallel
C. Coincident
D. None of these ,
A. (9C2 x 3C2)/9C2
B. (4C2 x 5C2)/9C2
C. (4C2 x 9C2)/9C2
D. None of these
A. ((1, 1), (3, 1), (2, 3), (4,2))
B. ((1,1), (9,1), (4,9). (16,4))
C. ((1,1), (2, 1), (4,3), (3, 1))
D. ((1,3), (3,3), (3,4), (3,2))